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Introduction
This document provides a foundational approach to constructing Galois repre-
sentations associated with the infinite-dimensional modular group SL(∞,OK),
where OK represents higher analogues of rings of integers derived from Euler
systems. These representations generalize the classical theory of Galois repre-
sentations associated with modular forms and number fields.

1 Absolute Galois Group and Cohomology
Definition 1 (Absolute Galois Group). Let K be a number field, and let K be
an algebraic closure of K. The absolute Galois group of K is defined as

GK = Gal(K/K).

2 Infinite-Dimensional Cohomology and Euler Sys-
tems

Definition 2 (Infinite-Dimensional Cohomology). Let H be a Hilbert space over
Qp, and let E denote an Euler system associated with a family of cohomology
classes over K. The cohomology classes are defined in the infinite-dimensional
setting, where cohomology groups are computed as limits of finite-dimensional
subspaces.

3 Galois Representations for SL(∞,OK)

Definition 3 (Galois Representation Associated with SL(∞,OK)). Let E be an
Euler system over K, and let Tp(V ) denote the Tate module associated with an
infinite-dimensional vector space V over Qp. A Galois representation associated
with SL(∞,OK) is a homomorphism

ρ : GK → GL(∞,Qp),
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such that

• ρ is compatible with the action of GK on the cohomology classes in the
Euler system E.

• ρ respects the infinite-dimensional structure of the cohomology groups as-
sociated with SL(∞,OK).

4 Construction of the Galois Representation
Theorem 1 (Existence of a Galois Representation). There exists a Galois rep-
resentation ρ : GK → GL(∞,Qp) associated with the infinite-dimensional mod-
ular group SL(∞,OK), constructed as a direct limit of finite-dimensional Galois
representations arising from the cohomology of modular varieties.

Proof. The construction follows by extending finite-dimensional representations
associated with finite-rank modular forms to an infinite-dimensional limit, en-
suring compatibility with the Euler system.

5 Infinite-Dimensional Special Linear Group
Definition 4 (Infinite-Dimensional Special Linear Group SL(∞,Z)). Let SL(∞,Z)
denote the group of infinite, countable matrices A = (aij) with integer entries,
which satisfy the following properties:

• A has only finitely many non-identity entries (i.e., outside a finite subma-
trix, A is the identity matrix).

• The determinant of A is 1.

This group is the infinite-dimensional analog of SL(2,Z), acting on an infinite-
dimensional complex space.

6 Infinite-Dimensional Upper Half-Space
Definition 5 (Infinite-Dimensional Upper Half-Space H∞). Define H∞ as the
space of positive-definite Hermitian operators Z on a separable Hilbert space H,
given by

H∞ = {Z ∈ B(H) | Z = Z∗, Im(Z) > 0},

where B(H) is the space of bounded operators on H and Im(Z) > 0 indicates
that the imaginary part of Z is positive-definite.
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7 Transformation Properties of Modular Func-
tions

Definition 6 (Modularity Condition for SL(∞,Z)). A function f : H∞ → C
is called an infinite-dimensional modular function if it satisfies the following:

• Transformation Property: For every A =

(
a b
c d

)
∈ SL(∞,Z), we

have
f((aZ + b)(cZ + d)−1) = f(Z),

where A ·Z = (aZ+ b)(cZ+ d)−1 denotes the action of SL(∞,Z) on H∞.

• Holomorphicity: The function f is holomorphic on H∞ in the sense of
Fréchet differentiability.

8 Meromorphicity at Infinity
Definition 7 (Fourier Expansion at Infinity). A modular function f on H∞
has a Fourier expansion at infinity if it admits an expansion of the form

f(Z) =

∞∑
n=−∞

ane
2πiTr(nZ),

where an ∈ C, and Tr(nZ) denotes the trace applied to the eigenvalues of Z in
the Hilbert space setting.

9 Construction of Infinite-Dimensional Modular
Forms

Theorem 2 (Existence of Infinite-Dimensional Eisenstein Series). An analog
of the Eisenstein series can be defined on H∞ by summing over SL(∞,Z):

E(Z) =
∑

A∈SL(∞,Z)/Γ∞,∞

f(AZ),

where f is a test function satisfying the modularity condition.

Proof. The proof involves verifying convergence and invariance under the group
action, which can be controlled by the decay properties of f .

10 Generalized Infinite-Dimensional Modular Group
Definition 8 (Infinite-Dimensional Special Linear Group over OK). Let K be
a number field with ring of integers OK . Define SL(∞,OK) as the group of
infinite, countable matrices A = (aij) with entries in OK , such that:
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• A has determinant 1.

• A is the identity outside a finite submatrix.

This group acts on a generalized upper half-space, and serves as a higher analogue
of SL(2,Z).

11 Generalized Upper Half-Space
Definition 9 (Upper Half-Space Associated with K). Let H∞(K) denote the
infinite-dimensional upper half-space associated with the field K, defined as

H∞(K) = {Z ∈ B(H) | Z = Z∗, Im(Z) > 0},

where B(H) is the space of bounded operators on a Hilbert space H and Im(Z) >
0 indicates that the imaginary part of Z is positive-definite.

12 Transformation Properties of Generalized Mod-
ular Functions

Definition 10 (Modularity Condition for SL(∞,OK)). A function f : H∞(K)→
C is called a generalized modular function if it satisfies the following:

• Transformation Property: For every A ∈ SL(∞,OK), we have

f(A · Z) = f(Z),

where A ·Z = (aZ + b)(cZ + d)−1 represents the action of SL(∞,OK) on
H∞(K).

• Holomorphicity: The function f is holomorphic on H∞(K) in the sense
of Fréchet differentiability.

13 Higher Analogues with Euler Systems
Definition 11 (Euler-Modular Functions). Let E be an Euler system associated
with a family of cohomology classes over K. An Euler-modular function is a
function f : H∞(K) → C satisfying compatibility under the actions defined by
E, extending the modular transformation property to cohomological or motivic
structures.
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14 Examples of Generalized Modular Forms
Theorem 3 (Existence of Higher Eisenstein Series). For SL(∞,OK), there
exists an analog of the Eisenstein series, defined by summing over a coset de-
composition of SL(∞,OK):

E(Z) =
∑

A∈SL(∞,OK)/Γ∞

f(AZ),

where f is a test function satisfying the modularity condition.

Proof. This result follows by constructing a suitable test function f and proving
the convergence of the Eisenstein series under the decay properties of f .

15 Absolute Galois Group and Cohomology
Definition 12 (Absolute Galois Group). Let K be a number field, and let K
be an algebraic closure of K. The absolute Galois group of K is defined as

GK = Gal(K/K).

16 Infinite-Dimensional Cohomology and Euler
Systems

Definition 13 (Infinite-Dimensional Cohomology). Let H be a Hilbert space
over Qp, and let E denote an Euler system associated with a family of cohomology
classes over K. The cohomology classes are defined in the infinite-dimensional
setting, where cohomology groups are computed as limits of finite-dimensional
subspaces.

17 Galois Representations for SL(∞,OK)

Definition 14 (Galois Representation Associated with SL(∞,OK)). Let E be
an Euler system over K, and let Tp(V ) denote the Tate module associated with an
infinite-dimensional vector space V over Qp. A Galois representation associated
with SL(∞,OK) is a homomorphism

ρ : GK → GL(∞,Qp),

such that

• ρ is compatible with the action of GK on the cohomology classes in the
Euler system E.

• ρ respects the infinite-dimensional structure of the cohomology groups as-
sociated with SL(∞,OK).
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18 Construction of the Galois Representation
Theorem 4 (Existence of a Galois Representation). There exists a Galois rep-
resentation ρ : GK → GL(∞,Qp) associated with the infinite-dimensional mod-
ular group SL(∞,OK), constructed as a direct limit of finite-dimensional Galois
representations arising from the cohomology of modular varieties.

Proof. The construction follows by extending finite-dimensional representations
associated with finite-rank modular forms to an infinite-dimensional limit, en-
suring compatibility with the Euler system.

Proof of the Modularity Conjecture. To prove the Infinite-Dimensional Modu-
larity Conjecture, we proceed in the following steps:

Step 1: Define the Infinite-Dimensional Iwasawa Module
Let M = Tp(V ) be the p-adic Tate module associated with an infinite-

dimensional modular variety over SL(∞,OK). This module M has a Zp-module
structure with an action of GK , and can be decomposed as a direct limit

M = lim←−Mn,

where Mn are finite-dimensional Iwasawa modules associated with subfields in
the Zp-extension of K. This decomposition allows us to extend finite-dimensional
Iwasawa theoretic tools to the infinite-dimensional setting.

Step 2: Study the Action of GK and Define Iwasawa Invariants
The action of GK on M defines a module over the Iwasawa algebra Λ =

Zp[[GK ]], where Λ-module properties control the growth of cohomological data
along Zp-extensions. Define the µ- and λ-invariants of M , which capture the
structure of M as a Λ-module: - The µ-invariant measures the Zp-torsion in
M . - The λ-invariant measures the rank of M as a Zp-module.

Step 3: Compatibility with Euler System E
The Galois representation ρ : GK → GL(∞,Qp) is compatible with an

Euler system E over K, ensuring that the cohomology classes in M satisfy
congruence relations across the tower of fields in the Zp-extension. This com-
patibility implies that M has a well-defined structure that mirrors that of an
infinite-dimensional modular form over SL(∞,OK).

Step 4: Construction of a Modular Form Corresponding to ρ
Using the structure of the Iwasawa module M and the compatibility with E ,

we construct a candidate infinite-dimensional modular form f on SL(∞,OK)
that realizes the Galois representation ρ. Specifically: - We define f to be a
function on the upper half-space H∞(K) with Fourier coefficients determined
by the cohomological data in M . - The modularity condition on SL(∞,OK)
holds for f , ensuring that f is invariant under the action of SL(∞,OK).

Step 5: Verification of Modularity via Iwasawa Invariants
To complete the proof, we verify that f satisfies the modular properties

associated with SL(∞,OK) by demonstrating that:
- The Iwasawa invariants µ and λ of M match those expected for an infinite-
dimensional modular form on SL(∞,OK).
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- The Fourier coefficients of f are compatible with the cohomological classes in
M , establishing that ρ indeed corresponds to the modular form f .

Thus, we conclude that ρ arises from an infinite-dimensional modular form
on SL(∞,OK), as conjectured.
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